Healthspan - Exercise Benefits in Promoting Cardiovascular Function

This is the second in the blog series on Promoting Healthspan & Healthy Aging Through Exercise. We’ll focus on the benefits of exercise with the promotion of increased Cardiovascular Function

Cardiovascular diseases are the leading cause of all mortalities around the world, with sedentary lifestyle being one of the biggest risk factors [28,29]. The most direct clinical indicators of cardiorespiratory fitness are cardiac output and VO2max, both are major parameters that decline with aging, potentially a determining factor for healthspan [30].

Cardiac output is defined as the amount of oxygenated blood pumped by the left ventricle per minute and calculated as the product of stroke volume and heart rate. In a healthy individual, rigorous exercise may increase cardiac output by 4-fold; in trained elite athletes, this increase may be up to 6–8 fold [17].

VO2max is the maximal amount of oxygen that is utilized by the all the organ systems during exercise. Since the 1980s, it has been well categorized that VO2max increases with endurance exercise training regardless of age, sex or exercise mode, and is a critical measurement of risk factors of aging-related diseases [31]. A thorough analysis by Gries et al. showed that enhanced VO2max by exercise training during adulthood can even be kept up to the eighth decades in athletes [32].

One of the mechanisms proposed for exercise-mediated promotion of cardiovascular fitness is via physiological hypertrophy, i.e., an increase in heart muscle mass along with enhanced contractile function, as opposed to pathological hypertrophy along with pathological changes such as fibrosis that may lead to heart failure. Physiological hypertrophy occurs in response to increased wall stress and other signaling events during exercise training. A series of studies discovered that the insulin and insulin-like growth factor 1 (IGF1) pathways including insulin receptor substrate 1/2 (Akt1/2), IGF receptor and phosphoinositide 3-kinase (PI3K) are important in exercise-mediated physiological hypertrophy in mice [33,34,35,36,37]. In addition to hypertrophy, many other adaptations including contractile apparatus remodeling, mitochondrial remodeling, change in metabolism and angiogenesis along with altered gene expression also occur during exercise training [33,38,39]. Other pathways that are pertinent to physiological heart growth in response to exercise training remain to be fully explored. Therefore, future studies that focus on a more thorough investigation of the mechanisms behind exercise-induced physiological hypertrophy and enhanced cardiac function will provide new insights into healthspan benefits of exercise.

Exercise Benefits in Ameliorating Cardiovascular Diseases (CVD)

Endurance exercise has also been demonstrated to have both preventative and therapeutic effects on myocardial infarction [40,41,42,43,44], atherosclerosis [45,46], and hypertension [47,48,49], which are among the biggest risk factors that shorten our healthspan. Substantial amount of evidence have shown that long-term endurance exercise can delay aging-associated decline of both cardiac output and VO2max, contributing to disease prevention and promotion of quality of life [50,51,52,53,54]. In the past decade, the notion of “exercise as medicine” has gained tremendous popularity, which has prompted a number of clinical studies focusing on exercise regimens and methodologies to tackle cardiovascular challenges in patients [55,56,57,58]. Overall, it is recommended to prescribe moderate to low intensity (<60% maximal HR) endurance exercise at a frequency of 3–5 times per week to patients with cardiovascular diseases [55]. Significant effort has been committed in the past 50 years to unravel the molecular mechanisms behind exercise-mediated protection against CVD and promotion of recovery from cardiac injuries like ischemia-reperfusion (I/R); however, our understanding is still incomplete.

Heart failure is one of the top leading causes of death worldwide. Exercise is the best intervention for prevention and even treatment of heart failure without causing further cardiac injuries [59,60,61,62,63]. An early study in exercise intervention in human chronic heart failure patients in 1999 showed that one year of moderate intensity cycling (60% VO2max) led to better cardiac outcomes and quality of life improvements [64]. The mechanisms of exercise benefits on heart failure are multifaceted, without clear understanding of the exact molecular targets. Potential aspects that exercise may positively impact on preventing heart failure include enhanced energy metabolism [39,65], mitigated oxidative stress [66], improved mitochondrial function [64,67]; a clear understanding of the molecular mechanisms is yet to be investigated.

Atherosclerosis

Atherosclerosis is a prevalent, chronic vascular disease that affects millions of people worldwide. The pathology of atherosclerosis is complicated and multifaceted, with inflammatory factors and endothelial activation being early contributors; eventually, arterial wall lesions form, and cholesterol-rich lipids form blockades in the vessels, causing detrimental damage. Exercise has been discovered to (1) enhance endothelial function, and (2) exhibit anti-inflammatory and antioxidant effects as ways to help prevent the onset of atherosclerosis [68,69,70,71,72,73,74,75,76].

Overall, molecular mechanisms underlying exercise benefits in CVD is multi-faceted and incompletely understood. First and foremost, physiological stress signaling induced by exercise may be key. The most studied stress signaling kinase in exercise is 5′ AMP-activated kinase (AMPK) since it is activated during energetic stress, i.e., increased AMP/ADP concentration [77]. Studies over the years have found it to be a critical signaling molecule in CVD like ischemia/reperfusion (I/R), fibrosis and vascular dysfunction [78,79,80,81,82]. AMPK is a heterotrimeric complex with a catalytic α domain, a non-catalytic β domain and a regulatory, AMP/APD-binding γ domain. Each subunit has different isoforms that are encoded by separate genes, which determines AMPK expression of different tissues (α1, α2, β1, β2, γ1, γ2, and γ3). In heart, α2-, β2- and γ1-subunit are most commonly expressed [83]. Acute exercise causes energetic stress and signaling events that are sensed by AMPK and activates AMPK, leading to a series of phosphorylation cascades to regulate downstream signaling. Recent evidence also suggested that subcellular localization of AMPK may also be of importance, e.g., exercise may specifically activate mitochondria-associated AMPK [84]. Future studies on subcellular AMPK pools will improve the understanding in how AMPK regulates exercise benefits.

Mitochondria may also be a key player in exercise-mediated protection from CVD due to its central role in CVD progression [85,86]. Exercise training can potentially both improve mitochondrial content (biogenesis) and dynamics (fission, fusion and mitophagy). It has been well-established that increases in transcription and abundance of peroxisome proliferator-activated receptor co-activator (PGC-1α), a master transcriptional co-activator for mitochondrial and oxidative metabolism, is responsible for increased mitochondrial biogenesis after exercise [87,88,89]. In addition, recent evidence suggests that the improved quality of mitochondria, alongside with increase in quantity, may also be a key factor in protecting the heart from CVD [67,90,91,92]. Mitochondrial quality is usually measured with O2 consumption, membrane integrity and morphology, which can all be enhanced by regular exercise [93,94,95,96,97,98]. A 2019 study found that mitophagy, more than macroautophagy, is critical in maintaining cardiac function in diabetic cardiomyopathy [99]. Although the necessity of exercise-induced mitophagy is not explored in this model, it has been suspected that, in other cardiac injury models, exercise may help maintain cardiac function through upregulating mitophagy [100,101,102].

Last but not least, skeletal muscle-derived humoral factors by endurance exercise may provide protection against pathological development of heart failure under disease conditions. For example, extracellular superoxide dismutase (EcSOD) is a superoxide scavenger that is upregulated in skeletal muscle upon exercise and travels to the peripheral tissues/organs, including the heart through the circulation, which has been shown to prevent diabetic cardiomyopathy [103,104].

If you want longevity and an increased healthspan the benefits of cardiovascular exercise cannot be understated. Physical activity has many health benefits. These benefits apply to people of all ages, races and ethnicities, and sexes. Physical activity helps you maintain a healthy weight and makes it easier to do daily tasks, such as playing your your kids (and grand children), climbing stairs and shopping. All of which are vital for your health span and prolonged independent living.

Reference

28. Centers for Disease Control and Prevention Leading Causes of Death. [(accessed on 24 December 2021)]; Available online: https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm

29. United Nations Mortality. [(accessed on 24 December 2021)]. Available online: https://unstats.un.org/unsd/demographic/sconcerns/mortality/mort2.htm#DYB

30. Hagberg J.M. Effect of training on the decline of VO2max with aging. Fed. Proc. 1987;46:1830–1833. [PubMed] [Google Scholar]

31. Ross R., Blair S.N., Arena R., Church T.S., Després J.P., Franklin B.A., Haskell W.L., Kaminsky L.A., Levine B.D., Lavie C.J., et al. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement from the American Heart Association. Circulation. 2016;134:e653–e699. doi: 10.1161/CIR.0000000000000461. [PubMed] [CrossRef] [Google Scholar]

32. Gries K.J., Raue U., Perkins R.K., Lavin K.M., Overstreet B.S., D’Acquisto L.J., Graham B., Finch W.H., Kaminsky L.A., Trappe T.A., et al. Cardiovascular and skeletal muscle health with lifelong exercise. J. Appl. Physiol. 2018;125:1636–1645. doi: 10.1152/japplphysiol.00174.2018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Perrino C., Naga Prasad S.V., Mao L., Noma T., Yan Z., Kim H.S., Smithies O., Rockman H.A. Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction. J. Clin. Investig. 2006;116:1547–1560. doi: 10.1172/JCI25397. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Riehle C., Wende A.R., Zhu Y., Oliveira K.J., Pereira R.O., Jaishy B.P., Bevins J., Valdez S., Noh J., Kim B.J., et al. Insulin receptor substrates are essential for the bioenergetic and hypertrophic response of the heart to exercise training. Mol. Cell Biol. 2014;34:3450–3460. doi: 10.1128/MCB.00426-14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Kim J., Wende A.R., Sena S., Theobald H.A., Soto J., Sloan C., Wayment B.E., Litwin S.E., Holzenberger M., LeRoith D., et al. Insulin-like growth factor I receptor signaling is required for exercise-induced cardiac hypertrophy. Mol. Endocrinol. 2008;22:2531–2543. doi: 10.1210/me.2008-0265. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. McMullen J.R., Shioi T., Huang W.Y., Zhang L., Tarnavski O., Bisping E., Schinke M., Kong S., Sherwood M.C., Brown J., et al. The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110alpha) pathway. J. Biol. Chem. 2004;279:4782–4793. doi: 10.1074/jbc.M310405200. [PubMed] [CrossRef] [Google Scholar]

37. DeBosch B., Treskov I., Lupu T.S., Weinheimer C., Kovacs A., Courtois M., Muslin A.J. Akt1 is required for physiological cardiac growth. Circulation. 2006;113:2097–2104. doi: 10.1161/CIRCULATIONAHA.105.595231. [PubMed] [CrossRef] [Google Scholar]

38. Chen Z., Zhou Z., Peng X., Sun C., Yang D., Li C., Zhu R., Zhang P., Zheng L., Tang C. Cardioprotective responses to aerobic exercise-induced physiological hypertrophy in zebrafish heart. J. Physiol. Sci. 2021;71:33. doi: 10.1186/s12576-021-00818-w. [PubMed] [CrossRef] [Google Scholar]

39. Gibb A.A., Epstein P.N., Uchida S., Zheng Y., McNally L.A., Obal D., Katragadda K., Trainor P., Conklin D.J., Brittian K.R., et al. Exercise-Induced Changes in Glucose Metabolism Promote Physiological Cardiac Growth. Circulation. 2017;136:2144–2157. doi: 10.1161/CIRCULATIONAHA.117.028274. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. O’Connor G.T., Buring J.E., Yusuf S., Goldhaber S.Z., Olmstead E.M., Paffenbarger R.S., Hennekens C.H. An overview of randomized trials of rehabilitation with exercise after myocardial infarction. Circulation. 1989;80:234–244. doi: 10.1161/01.CIR.80.2.234. [PubMed] [CrossRef] [Google Scholar]

41. Blond K., Brinkløv C.F., Ried-Larsen M., Crippa A., Grøntved A. Association of high amounts of physical activity with mortality risk: A systematic review and meta-analysis. Br. J. Sports Med. 2020;54:1195–1201. doi: 10.1136/bjsports-2018-100393. [PubMed] [CrossRef] [Google Scholar]

42. Maessen M.F., Eijsvogels T.M., Stevens G., van Dijk A.P., Hopman M.T. Benefits of lifelong exercise training on left ventricular function after myocardial infarction. Eur. J. Prev. Cardiol. 2017;24:1856–1866. doi: 10.1177/2047487317728765. [PubMed] [CrossRef] [Google Scholar]

43. Peytz N.C., Jabbari R., Bojesen S.E., Nordestgaard B., Schnohr P., Prescott E. Physical activity and risk of instant and 28-day case-fatality in myocardial infarction. PLoS ONE. 2019;14:e0217398. doi: 10.1371/journal.pone.0217398. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. de Waard M.C., Duncker D.J. Prior exercise improves survival, infarct healing, and left ventricular function after myocardial infarction. J. Appl. Physiol. 2009;107:928–936. doi: 10.1152/japplphysiol.91281.2008. [PubMed] [CrossRef] [Google Scholar]

45. Pedersen B.K. The diseasome of physical inactivity-and the role of myokines in muscle-fat cross talk. J. Physiol. 2009;587:5559–5568. doi: 10.1113/jphysiol.2009.179515. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Szostak J., Laurant P. The forgotten face of regular physical exercise: A ‘natural’ anti-atherogenic activity. Clin. Sci. 2011;121:91–106. doi: 10.1042/CS20100520. [PubMed] [CrossRef] [Google Scholar]

47. Laterza M.C., de Matos L.D., Trombetta I.C., Braga A.M., Roveda F., Alves M.J., Krieger E.M., Negrão C.E., Rondon M.U. Exercise training restores baroreflex sensitivity in never-treated hypertensive patients. Hypertension. 2007;49:1298–1306. doi: 10.1161/HYPERTENSIONAHA.106.085548. [PubMed] [CrossRef] [Google Scholar]

48. Pagani M., Somers V., Furlan R., Dell’Orto S., Conway J., Baselli G., Cerutti S., Sleight P., Malliani A. Changes in autonomic regulation induced by physical training in mild hypertension. Hypertension. 1988;12:600–610. doi: 10.1161/01.HYP.12.6.600. [PubMed] [CrossRef] [Google Scholar]

49. Somers V.K., Conway J., Johnston J., Sleight P. Effects of endurance training on baroreflex sensitivity and blood pressure in borderline hypertension. Lancet. 1991;337:1363–1368. doi: 10.1016/0140-6736(91)93056-F. [PubMed] [CrossRef] [Google Scholar]

50. Garber C.E., Blissmer B., Deschenes M.R., Franklin B.A., Lamonte M.J., Lee I.M., Nieman D.C., Swain D.P., Medicine A.C.o.S. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011;43:1334–1359. doi: 10.1249/MSS.0b013e318213fefb. [PubMed] [CrossRef] [Google Scholar]

51. Cordina R.L., O’Meagher S., Karmali A., Rae C.L., Liess C., Kemp G.J., Puranik R., Singh N., Celermajer D.S. Resistance training improves cardiac output, exercise capacity and tolerance to positive airway pressure in Fontan physiology. Int. J. Cardiol. 2013;168:780–788. doi: 10.1016/j.ijcard.2012.10.012. [PubMed] [CrossRef] [Google Scholar]

52. Helgerud J., Høydal K., Wang E., Karlsen T., Berg P., Bjerkaas M., Simonsen T., Helgesen C., Hjorth N., Bach R., et al. Aerobic high-intensity intervals improve VO2max more than moderate training. Med. Sci. Sports Exerc. 2007;39:665–671. doi: 10.1249/mss.0b013e3180304570. [PubMed] [CrossRef] [Google Scholar]

53. Bacon A.P., Carter R.E., Ogle E.A., Joyner M.J. VO2max trainability and high intensity interval training in humans: A meta-analysis. PLoS ONE. 2013;8:e73182. doi: 10.1371/journal.pone.0073182. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Park H.Y., Park W., Lim K. Living High-Training Low for 21 Days Enhances Exercise Economy, Hemodynamic Function, and Exercise Performance of Competitive Runners. J. Sports Sci. Med. 2019;18:427–437. [PMC free article] [PubMed] [Google Scholar]

55. Hansen D., Niebauer J., Cornelissen V., Barna O., Neunhäuserer D., Stettler C., Tonoli C., Greco E., Fagard R., Coninx K., et al. Exercise Prescription in Patients with Different Combinations of Cardiovascular Disease Risk Factors: A Consensus Statement from the EXPERT Working Group. Sports Med. 2018;48:1781–1797. doi: 10.1007/s40279-018-0930-4. [PubMed] [CrossRef] [Google Scholar]

56. Garvey C., Bayles M.P., Hamm L.F., Hill K., Holland A., Limberg T.M., Spruit M.A. Pulmonary Rehabilitation Exercise Prescription in Chronic Obstructive Pulmonary Disease: Review of Selected Guidelines: An Official Statement from The American Association Of Cardiovascular And Pulmonary Rehabilitation. J. Cardiopulm. Rehabil. Prev. 2016;36:75–83. doi: 10.1097/HCR.0000000000000171. [PubMed] [CrossRef] [Google Scholar]

57. Pedersen B.K., Saltin B. Exercise as medicine—Evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sports. 2015;25:1–72. doi: 10.1111/sms.12581. [PubMed] [CrossRef] [Google Scholar]

58. Bray N.W., Smart R.R., Jakobi J.M., Jones G.R. Exercise prescription to reverse frailty. Appl. Physiol. Nutr. Metab. 2016;41:1112–1116. doi: 10.1139/apnm-2016-0226. [PubMed] [CrossRef] [Google Scholar]

59. Piepoli M.F., Davos C., Francis D.P., Coats A.J., Collaborative E. Exercise training meta-analysis of trials in patients with chronic heart failure (ExTraMATCH) BMJ. 2004;328:189. doi: 10.1136/bmj.328.7441.711-b. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Davies E.J., Moxham T., Rees K., Singh S., Coats A.J., Ebrahim S., Lough F., Taylor R.S. Exercise training for systolic heart failure: Cochrane systematic review and meta-analysis. Eur. J. Heart Fail. 2010;12:706–715. doi: 10.1093/eurjhf/hfq056. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Sagar V.A., Davies E.J., Briscoe S., Coats A.J., Dalal H.M., Lough F., Rees K., Singh S., Taylor R.S. Exercise-based rehabilitation for heart failure: Systematic review and meta-analysis. Open Heart. 2015;2:e000163. doi: 10.1136/openhrt-2014-000163. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Smart N., Marwick T.H. Exercise training for patients with heart failure: A systematic review of factors that improve mortality and morbidity. Am. J. Med. 2004;116:693–706. doi: 10.1016/j.amjmed.2003.11.033. [PubMed] [CrossRef] [Google Scholar]

63. Harwood A.E., Russell S., Okwose N.C., McGuire S., Jakovljevic D.G., McGregor G. A systematic review of rehabilitation in chronic heart failure: Evaluating the reporting of exercise interventions. ESC Heart Fail. 2021;8:3458–3471. doi: 10.1002/ehf2.13498. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Belardinelli R., Georgiou D., Cianci G., Purcaro A. Randomized, controlled trial of long-term moderate exercise training in chronic heart failure: Effects on functional capacity, quality of life, and clinical outcome. Circulation. 1999;99:1173–1182. doi: 10.1161/01.CIR.99.9.1173. [PubMed] [CrossRef] [Google Scholar]

65. Lopaschuk G.D., Karwi Q.G., Tian R., Wende A.R., Abel E.D. Cardiac Energy Metabolism in Heart Failure. Circ. Res. 2021;128:1487–1513. doi: 10.1161/CIRCRESAHA.121.318241. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Tsutsui H., Kinugawa S., Matsushima S. Oxidative stress and heart failure. Am. J. Physiol. Heart Circ. Physiol. 2011;301:H2181–H2190. doi: 10.1152/ajpheart.00554.2011. [PubMed] [CrossRef] [Google Scholar]

67. Kwak H.B., Song W., Lawler J.M. Exercise training attenuates age-induced elevation in Bax/Bcl-2 ratio, apoptosis, and remodeling in the rat heart. FASEB J. 2006;20:791–793. doi: 10.1096/fj.05-5116fje. [PubMed] [CrossRef] [Google Scholar]

68. Keller C., Steensberg A., Pilegaard H., Osada T., Saltin B., Pedersen B.K., Neufer P.D. Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: Influence of muscle glycogen content. FASEB J. 2001;15:2748–2750. doi: 10.1096/fj.01-0507fje. [PubMed] [CrossRef] [Google Scholar]

69. Steensberg A., van Hall G., Osada T., Sacchetti M., Saltin B., Klarlund Pedersen B. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J. Physiol. 2000;529:237–242. doi: 10.1111/j.1469-7793.2000.00237.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Green D.J., Maiorana A., O’Driscoll G., Taylor R. Effect of exercise training on endothelium-derived nitric oxide function in humans. J. Physiol. 2004;561:1–25. doi: 10.1113/jphysiol.2004.068197. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Maiorana A., O’Driscoll G., Taylor R., Green D. Exercise and the nitric oxide vasodilator system. Sports Med. 2003;33:1013–1035. doi: 10.2165/00007256-200333140-00001. [PubMed] [CrossRef] [Google Scholar]

72. Hong J., Park E., Lee J., Lee Y., Rooney B.V., Park Y. Exercise training mitigates ER stress and UCP2 deficiency-associated coronary vascular dysfunction in atherosclerosis. Sci. Rep. 2021;11:15449. doi: 10.1038/s41598-021-94944-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Kramsch D.M., Aspen A.J., Abramowitz B.M., Kreimendahl T., Hood W.B. Reduction of coronary atherosclerosis by moderate conditioning exercise in monkeys on an atherogenic diet. N. Engl. J. Med. 1981;305:1483–1489. doi: 10.1056/NEJM198112173052501. [PubMed] [CrossRef] [Google Scholar]

74. Napoli C., Williams-Ignarro S., de Nigris F., Lerman L.O., D’Armiento F.P., Crimi E., Byrns R.E., Casamassimi A., Lanza A., Gombos F., et al. Physical training and metabolic supplementation reduce spontaneous atherosclerotic plaque rupture and prolong survival in hypercholesterolemic mice. Proc. Natl. Acad. Sci. USA. 2006;103:10479–10484. doi: 10.1073/pnas.0602774103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Kim Y.J., Shin Y.O., Bae J.S., Lee J.B., Ham J.H., Son Y.J., Kim J.K., Kim C., Lee B.K., Oh J.K., et al. Beneficial effects of cardiac rehabilitation and exercise after percutaneous coronary intervention on hsCRP and inflammatory cytokines in CAD patients. Pflug. Arch. 2008;455:1081–1088. doi: 10.1007/s00424-007-0356-6. [PubMed] [CrossRef] [Google Scholar]

76. Trøseid M., Lappegård K.T., Claudi T., Damås J.K., Mørkrid L., Brendberg R., Mollnes T.E. Exercise reduces plasma levels of the chemokines MCP-1 and IL-8 in subjects with the metabolic syndrome. Eur. Heart J. 2004;25:349–355. doi: 10.1016/j.ehj.2003.12.006. [PubMed] [CrossRef] [Google Scholar]

77. Coven D.L., Hu X., Cong L., Bergeron R., Shulman G.I., Hardie D.G., Young L.H. Physiological role of AMP-activated protein kinase in the heart: Graded activation during exercise. Am. J. Physiol. Endocrinol. Metab. 2003;285:E629–E636. doi: 10.1152/ajpendo.00171.2003. [PubMed] [CrossRef] [Google Scholar]

78. Russell R.R., Li J., Coven D.L., Pypaert M., Zechner C., Palmeri M., Giordano F.J., Mu J., Birnbaum M.J., Young L.H. AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J. Clin. Invest. 2004;114:495–503. doi: 10.1172/JCI19297. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Morrison A., Yan X., Tong C., Li J. Acute rosiglitazone treatment is cardioprotective against ischemia-reperfusion injury by modulating AMPK, Akt, and JNK signaling in nondiabetic mice. Am. J. Physiol. Heart Circ. Physiol. 2011;301:H895–H902. doi: 10.1152/ajpheart.00137.2011. [PubMed] [CrossRef] [Google Scholar]

80. Ma X., Fu Y., Xiao H., Song Y., Chen R., Shen J., An X., Shen Q., Li Z., Zhang Y. Cardiac Fibrosis Alleviated by Exercise Training Is AMPK-Dependent. PLoS ONE. 2015;10:e0129971. doi: 10.1371/journal.pone.0129971. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Li F.Y., Lam K.S., Tse H.F., Chen C., Wang Y., Vanhoutte P.M., Xu A. Endothelium-selective activation of AMP-activated protein kinase prevents diabetes mellitus-induced impairment in vascular function and reendothelialization via induction of heme oxygenase-1 in mice. Circulation. 2012;126:1267–1277. doi: 10.1161/CIRCULATIONAHA.112.108159. [PubMed] [CrossRef] [Google Scholar]

82. Miller E.J., Li J., Leng L., McDonald C., Atsumi T., Bucala R., Young L.H. Macrophage migration inhibitory factor stimulates AMP-activated protein kinase in the ischaemic heart. Nature. 2008;451:578–582. doi: 10.1038/nature06504. [PubMed] [CrossRef] [Google Scholar]

83. Thornton C., Snowden M.A., Carling D. Identification of a novel AMP-activated protein kinase beta subunit isoform that is highly expressed in skeletal muscle. J. Biol. Chem. 1998;273:12443–12450. doi: 10.1074/jbc.273.20.12443. [PubMed] [CrossRef] [Google Scholar]

84. Drake J.C., Wilson R.J., Laker R.C., Guan Y., Spaulding H.R., Nichenko A.S., Shen W., Shang H., Dorn M.V., Huang K., et al. Mitochondria-localized AMPK responds to local energetics and contributes to exercise and energetic stress-induced mitophagy. Proc. Natl. Acad. Sci. USA. 2021;118:e2025932118. doi: 10.1073/pnas.2025932118. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Vásquez-Trincado C., García-Carvajal I., Pennanen C., Parra V., Hill J.A., Rothermel B.A., Lavandero S. Mitochondrial dynamics, mitophagy and cardiovascular disease. J. Physiol. 2016;594:509–525. doi: 10.1113/JP271301. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Bonora M., Wieckowski M.R., Sinclair D.A., Kroemer G., Pinton P., Galluzzi L. Targeting mitochondria for cardiovascular disorders: Therapeutic potential and obstacles. Nat. Rev. Cardiol. 2019;16:33–55. doi: 10.1038/s41569-018-0074-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Wu Z., Puigserver P., Andersson U., Zhang C., Adelmant G., Mootha V., Troy A., Cinti S., Lowell B., Scarpulla R.C., et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98:115–124. doi: 10.1016/S0092-8674(00)80611-X. [PubMed] [CrossRef] [Google Scholar]

88. Lin J., Wu H., Tarr P.T., Zhang C.Y., Wu Z., Boss O., Michael L.F., Puigserver P., Isotani E., Olson E.N., et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002;418:797–801. doi: 10.1038/nature00904. [PubMed] [CrossRef] [Google Scholar]

89. Akimoto T., Pohnert S.C., Li P., Zhang M., Gumbs C., Rosenberg P.B., Williams R.S., Yan Z. Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway. J. Biol. Chem. 2005;280:19587–19593. doi: 10.1074/jbc.M408862200. [PubMed] [CrossRef] [Google Scholar]

90. Campos J.C., Queliconi B.B., Bozi L.H.M., Bechara L.R.G., Dourado P.M.M., Andres A.M., Jannig P.R., Gomes K.M.S., Zambelli V.O., Rocha-Resende C., et al. Exercise reestablishes autophagic flux and mitochondrial quality control in heart failure. Autophagy. 2017;13:1304–1317. doi: 10.1080/15548627.2017.1325062. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Kavazis A.N., McClung J.M., Hood D.A., Powers S.K. Exercise induces a cardiac mitochondrial phenotype that resists apoptotic stimuli. Am. J. Physiol. Heart Circ. Physiol. 2008;294:H928–H935. doi: 10.1152/ajpheart.01231.2007. [PubMed] [CrossRef] [Google Scholar]

92. Chen L., Knowlton A.A. Mitochondria and heart failure: New insights into an energetic problem. Minerva Cardioangiol. 2010;58:213–229. [PMC free article] [PubMed] [Google Scholar]

93. Rivera-Alvarez I., Pérez-Treviño P., Chapoy-Villanueva H., Vela-Guajardo J.E., Nieblas B., Garza-González S., García-Rivas G., García N. A single session of physical activity restores the mitochondrial organization disrupted by obesity in skeletal muscle fibers. Life Sci. 2020;256:117965. doi: 10.1016/j.lfs.2020.117965. [PubMed] [CrossRef] [Google Scholar]

94. Rosa-Caldwell M.E., Brown J.L., Perry R.A., Shimkus K.L., Shirazi-Fard Y., Brown L.A., Hogan H.A., Fluckey J.D., Washington T.A., Wiggs M.P., et al. Regulation of mitochondrial quality following repeated bouts of hindlimb unloading. Appl. Physiol. Nutr. Metab. 2020;45:264–274. doi: 10.1139/apnm-2019-0218. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Baumbach P., Neu C., Derlien S., Bauer M., Nisser M., Buder A., Coldewey S.M. A pilot study of exercise-induced changes in mitochondrial oxygen metabolism measured by a cellular oxygen metabolism monitor (PICOMET) Biochim. Biophys. Acta. Mol. Basis Dis. 2019;1865:749–758. doi: 10.1016/j.bbadis.2018.12.003. [PubMed] [CrossRef] [Google Scholar]

96. Wilson R.J., Drake J.C., Cui D., Ritger M.L., Guan Y., Call J.A., Zhang M., Leitner L.M., Gödecke A., Yan Z. Voluntary running protects against neuromuscular dysfunction following hindlimb ischemia-reperfusion in mice. J. Appl. Physiol. 2019;126:193–201. doi: 10.1152/japplphysiol.00358.2018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Arribat Y., Broskey N.T., Greggio C., Boutant M., Conde Alonso S., Kulkarni S.S., Lagarrigue S., Carnero E.A., Besson C., Cantó C., et al. Distinct patterns of skeletal muscle mitochondria fusion, fission and mitophagy upon duration of exercise training. Acta. Physiol. 2019;225:e13179. doi: 10.1111/apha.13179. [PubMed] [CrossRef] [Google Scholar]

98. Zhao D., Sun Y., Tan Y., Zhang Z., Hou Z., Gao C., Feng P., Zhang X., Yi W., Gao F. Short-Duration Swimming Exercise after Myocardial Infarction Attenuates Cardiac Dysfunction and Regulates Mitochondrial Quality Control in Aged Mice. Oxid. Med. Cell Longev. 2018;2018:4079041. doi: 10.1155/2018/4079041. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Tong M., Saito T., Zhai P., Oka S.I., Mizushima W., Nakamura M., Ikeda S., Shirakabe A., Sadoshima J. Mitophagy Is Essential for Maintaining Cardiac Function During High Fat Diet-Induced Diabetic Cardiomyopathy. Circ. Res. 2019;124:1360–1371. doi: 10.1161/CIRCRESAHA.118.314607. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. He W., Tang Y., Li C., Zhang X., Huang S., Tan B., Yang Z. Exercise Enhanced Cardiac Function in Mice with Radiation-Induced Heart Disease. Front. Physiol. 2021;12:739485. doi: 10.3389/fphys.2021.739485. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. Opichka M., Shute R., Marshall K., Slivka D. Effects of exercise in a cold environment on gene expression for mitochondrial biogenesis and mitophagy. Cryobiology. 2019;90:47–53. doi: 10.1016/j.cryobiol.2019.08.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Yuan Y., Pan S.S. Parkin Mediates Mitophagy to Participate in Cardioprotection Induced by Late Exercise Preconditioning but Bnip3 Does Not. J. Cardiovasc. Pharmacol. 2018;71:303–316. doi: 10.1097/FJC.0000000000000572. [PubMed] [CrossRef] [Google Scholar]

103. Hitomi Y., Watanabe S., Kizaki T., Sakurai T., Takemasa T., Haga S., Ookawara T., Suzuki K., Ohno H. Acute exercise increases expression of extracellular superoxide dismutase in skeletal muscle and the aorta. Redox Rep. 2008;13:213–216. doi: 10.1179/135100008X308894. [PubMed] [CrossRef] [Google Scholar]

104. Call J.A., Chain K.H., Martin K.S., Lira V.A., Okutsu M., Zhang M., Yan Z. Enhanced skeletal muscle expression of extracellular superoxide dismutase mitigates streptozotocin-induced diabetic cardiomyopathy by reducing oxidative stress and aberrant cell signaling. Circ. Heart Fail. 2015;8:188–197. doi: 10.1161/CIRCHEARTFAILURE.114.001540. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Previous
Previous

The Truth About Pilates

Next
Next

Promoting Healthspan & Healthy Aging Through Exercise